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ISM_ Introduction

Cluster randomized trials (CRT): treatment randomized at cluster level; outcomes (typically) collected at
individual level

Heterogeneous treatment effects (HTE): effect modifiers driving variations in a patient’s response to

interventions Cluster treatment
indicator
1) Yii=p1+ ﬁlei + [alX;j [+ 54P(ijWi +yi + €
Individual HTE
covariate

HTE analyses must be pre-specified

 Little guidance on these analyses when we are uncertain about the outcome ICC, p,,,, and
covariate ICC, p,

cluster size

2 —_—
var( E) — O-I%ITE _ GY|X(1 ,Dy|x){1 + (m + 1)py|x}

(2) # Clusters nmo_v%o-)?{ 1 + (m _ 2: pylx - (m _ 1)pXAOy|x}
[Yang et al.,(2020)] Outcome
|CC

1 mary.ryan@yale.edu Yale School of Public Health

@Marym_Ryan




_ISM_ Knowledge Gaps

1. What formulations of cluster size m and number of clusters n will , With
respect to a budget constraint, when ICCs are known?

2. When , can we find a (m, n) design that will be most efficient among
scenarios of inefficient ICC combinations?

3. Isthere a way to adequately power a CRT for HTE and average treatment effect (ATE)
analyses?
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Application to the K-DPP Study

Kerala Diabetes Prevention Program
[Thankappan et al., 2018]

* CRT of peer-support lifestyle diabetes intervention

* Secondary outcome: change in Indian Diabetes Risk
Score

e Post-hoc HTE: IDRS interaction with BMI

e 60 clusters with 10-23 participants each
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Abstract

Background

The major efficacy tials on diabetes prevention have used resource-ntensive approaches
to identify high-risk individuals and deliver lifestyle interventions. Such strategies are not fea-
sible for wider ation in low- and middle countries (LMICs). We aimed to
evaluate the effectiveness of a peer-support lifestyle intervention in preventing type 2 diabe-
tes among high-risk individuals identfied on the basis of a simple diabetes risk score.

Methods and findings

The Kerala Diabetes Prevention Program was a cluster-randomized controlled tral con-
ducted in 60 polling areas ) of Neyy taluk | t) in Trvandrum dis-
trict, Kerala state, India. Participants (age 30-60 years) were those with an Indian Diabetes
Risk Score (IDRS) =60 and were free of diabetes on an oral glucose tdlerance test (OGTT).
Atotal of 1,007 participants (47.2% female) were enrclled (507 in the control group and 500
in the intervention groug). Participants from intervention clusiers participated in a 12-month
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IBSM  KG1: HTE Locally Optimal Design

KG1: What formulations of cluster size m and number of clusters n will , With
respect to a budget constraint, when ICCs are known?

* Locally optimal design (LOD): design that maximizes power/minimizes variance
for fixed values of design parameters

* Budget constraint: |
per-cluster per-subject

cost cost Replace n in
(3) B =[cq +|smn B ofTE and
= n(c + sm) == c + sm| Minimize for m
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IBSM  KG1: HTE Locally Optimal Design

Proposition 1 - Minimizing otg With respect to m, the HTE LOD for a given minimum number of

clusters, n, is:

| Pyl (1) B/n—c
i If e < py < Tand mype < :
(1 - py|x)(1 - px) + \/p;ﬁck_l(l - py|x)(px - py|x){ 1- (k + 2)py|x +k+ 1)pxpy|x}
m t —
(4) oP B k_l(px - py|x) - py|x(1 - px)
Mopt = o — Only depends on
opt cost ratio (c/s)
ii. Otherwise
B/n—c
Mopt = T
_ B
Mopt = -7 SMopt
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JSM KG1: Application to K-DPP

Intervention cluster- to -individual cost ratio k = 30

* Accounting for cheaper control arm, assume k = 20 and B = $20,000

AIDRS — _15, AHTE = (0.25 X AIDRS = —0.375
Dyix = 0.028, py = 0.055

N

If minimum of 66 clusters (maximum m of 40):

| LOD: mype = 40, ngpe = 66 |
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IBM  KG2: HTE Maximin Design

* LOD requires — unrealistic expectation

KG2: When , can we find a (m, n) design that will be most efficient among
scenarios of inefficient ICC combinations?

 Maximin designs (MMD): design that is highly efficient in worst case parameter scenarios [van
Breukelen and Candel, 2015]

 Comparing designs (m, n) based on compared to LOD at a specific (pyx, px)
combination: HTE variance under
| 27 | LOD(Py |2 Px)
O "HTE y|xrFx
REytE =
OHTE

HTE variance at (m, n)
and (py|x, Px)
7 mary.ryan@yale.edu Yale School of Public Health @Marym_Ryan




IBM  KG2: HTE Maximin Design

MMD for assessing HTE in CRTs

1. Define the parameter space (py|x, px)and design space (m,n(m))
2. Foreach (py|x,px), compute HTE LOD according to (5). Then compute RE for each
(m, n(m)) compared with the LOD at the (py|x,px)

3. For each (m,n(m)), identify the (py|x, px) with the

4. Among the smallest REs, choose the (m,n(m)) with the
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JSM_ KG2: Application to K-DPP

K-DPP MMD
* m € [8,40] o
. n € [66,143]
* pyx € [0.005,0.1] |
0.75
. p, €[0.1,0.75]
2 0.50
MMD: mopt — 4‘0, Tlopt = 66 ,”
96.7% power to detect Ayrg 0.25
under least efficient scenario
96.5% power to detect Ay
under actual ICCs (0.03, 0.06) _—
0 10
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Only gain relative
efficiency if ICCs
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JSM KG3: Compound Objective

KG3: Is there a way to adequately power a CRT for HTE and average treatment effect

(ATE) analyses?

* Optimal designs for assessing HTE (minimizing UI%TE) may not be optimal for assessing ATE
(minimizing o21g)

* Need to optimize over that takes both HTE and ATE objectives into
account

Weighted combo of

single objective REs LOD under ATE

IATE ((ZTE)‘ Onte (CHTE)
(6) O|N)|=|2 +(1-21)
) Oate({) ‘GHTE <€) | |
Priority HTE variance
weight under design {
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JSM KG3: Compound Maximin

* When there is uncertainty around ICC values:

Compound MMD for assessing HTE and ATE in CRTs

1. Choose priority weight A

2. Define the parameter space (py|x, px)and design space (m,n(m))

3. Foreach (py|x,px), compute the LOD for each objective. Then compute O({|A) for each
(m, n(m)) compared with their LODs at the (py|x, px)

4. Foreach (m, n(m)), identify the (py|x, px) with the

5. Among the smallest criterion values, choose the (m, n(m)) with the
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KG3: Application to K-DPP

Calculate power under the
worse of the intersecting
ICC scenarios

* m€|[8,40]

. n € [66,143]
K-DPP MO MMD

py1x € [0.005,0.1]
. p, €[0.1,0.75]

L=04 A=0.6
1.00 W~y » 1.00 - T
'/l f_' ...:’,..'.--’;’ e = -
'/ £ ."‘ gl f."' .‘._"“ / /f -

5 0.75 15 o e g GG 0.75 ;
5 f,,"
30.50 ', § 0.50
©
E
5 0.25 0.25 0.25

0.00

ATE Power: 45.0%
HTE Power: 96.2%

10 20 30

40

0.00

ATE Power: 49.7%
HTE Power: 94.3%

0

10 20

30

40

0.00

ATE Power: 49.7%
HTE Power: 94.3%

0 10 20

30 40

Cluster Size (m)

Power under actual ICCs (0.03, 0.06)
ATE: 77.2%
HTE: 94.1%

Power under actual ICCs (0.03, 0.06)
ATE: 76.0%
HTE: 96.0%

Power under actual ICCs (0.03, 0.06)
ATE: 77.2%
HTE: 94.1%
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STATISTICS: A FOUNDATION FOR INNOVATION

Locally Optimal and Maximin Designs for Cluster Randomized Trials

Type of Objective: EREE TS Priority Weight o-CcC c-IcC Optimality Criterion m n
(O single objective - HTE Q LoD 05 0.2 0.1 0724 14 83
(O single Objective - ATE @® MMD
® Multiple Objective
L P BRI L e
Total budget: Cost per cluster: Cost per participant: 4 Ts o _Leett e
100000 500 50
c 0.75
Min. o-ICC Max. 0-ICC 2
2 - T e e e {Pyix: Px)
0.005 02 = et L.
0050 - - - (0.005, 0.1)
: = Tt --a -~ (0.005, 0.95)
Min. c-ICC Max. c-ICC 5 - - __ - (02.041)
£ S —— - - ____ - 2, 0.
0.1 0.95 E_ (0.2, 0.95)
O 025
Min. Number of Clusters (n) Max. Number of Clusters (n)
6 100
0.00
Min. Cluster Size (m) Max. Cluster Size (m) 0 o5 50 75 100
> 100 Cluster Size (m)

Priority weight:

0.5

Shiny App: https://mary-ryan.shinyapps.io/HTE-MMD-app/
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 Understanding treatment effect heterogeneity
future interventions can be designed and delivered

* Optimal designs within budget constraint

e Possible to find maximin designs to ICC value misspecification that jointly consider
HTE and ATE objectives

M.M. Ryan, D. Esserman, F. Li. Maximin optimal cluster randomized designs for
assessing treatment effect heterogeneity. (In Revision).
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Thank you!

Mary Ryan, PhD
Department of Biostatistics, Yale University
Email: mary.ryan@yale.edu
Twitter: @marym_ryan
Shiny App: https://mary-ryan.shinyapps.io/HTE-MMD-app/

Questions?
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JSM KG3.1: Compound LOD

* When ICCs are known, find compound LOD by solving for m that maximizes @({|A)

max 0({|A) . Oare({aTE) Onre(CaTE)
m = A 1-41
Oate($) * ) Oute({)
_ WaATE | WHTE
= T

OATE  OHTE
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ISM_ Appendix: Compound LOD

A2

Proposition 2 - Locally optimal compound design

. B/n—c
l. |f WATE > WHTE{(k ~+ 1)py|x — px(kpy|x ~+ 1)} and mopt < T
—whtekay|— \/WI?ITEkza% — 4{wyre (Kay — b)) — watepyx HWatek (1 — pypx) + WHTEI‘iaS
m t —
P . Z{WHTE(@ E) WATEDy|x} Constants
Nopt = involving
OPL T+ smgpy Py and pyx
ii. Otherwise
B/n—c
Mopt = T
B B
Mopt = SMopt
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JSM_ Appendix: Compound LOD

e Extraneous termsin (Al):

a; = P32;|x(1 — Px)

Az = 2pyx(1 = py1x) (1 — px)

az = (1 = 2py1x + pxPyjx) (1 = Pyx)
b1 = pyix(Px — Pyx)
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