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Motivation: SPOT GRADE Trial

I Researchers working on local hemostatic agent to stop bleeding on “low
grade” wounds

I FDA required researchers to first develop scale to classify bleeds
I Wanted surgeons to have better knowledge of what type of wounds

appropriate to use agent on
I Concerned surgeons would use agent on bleeds not be designed to stop
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Motivation: SPOT GRADE Trial

I SPOT GRADE surface bleed severity scale (SBSS) developed to

standardize severity of blood loss[13]

I 6 categories: 0-5
I Higher category ⇒ faster blood loss
I Hemostatic agent designed for category 3 or lower
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Motivation: SPOT GRADE Trial

I Scores defined by flux/flow rate of blood from wound
I Higher flow rate ranges for larger scores and larger bleed surfaces

I Bleeds within same category can look very different
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Motivation: SPOT GRADE Trial

I 14 surgeons watched video
simulations in a randomized
sequence and classified
bleeding severity by SPOT
GRADE category
I 36 training videos
I 36 testing videos

I Each video viewed 3
times (108 total clips to
view)

I Kappa statistic used to assess inter- and intra-rater reliability
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Rating Data

I Rating data can be thought of as multinomial random variables:

(x11, . . . , xkk) ∼ Multinomial (N, [π11, . . . , πkk ]) ,

I How can we tell how well raters are
agreeing with each other overall?

I Observed probability of agreement:
po =

∑k
i=1 pii

I Issue: expected probability of
agreement by chance changes
depending on marginal probability
of classifying item to category
I Can’t just trust a “high”

agreement probability to signal
“high” agreement
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Cohen’s Kappa[2]

I Kappa statistic assesses
likelihood-above-chance of two
raters agreeing

κ =
po − pe
1− pe

∈ (−1, 1)

I po =
∑k

i=1 pii
I pe =

∑k
i=1 pi.p.i

I κ = 0 implies rater agreement on par
with chance

I κ→ 1 implies raters agree more

I κ→ −1 implies raters disagree more

I Assumes all items within a
category are exchangeable and all
ratings independent

I Landis & Koch’s[9] interpretation
of κ:

κvalue Interpretation

(-1, 0) Poor agreement
[0, 0.2] Slight agreement

(0.2, 0.4] Fair agreement
(0.4, 0.6] Moderate agreement
(0.6, 0.8] Substantial agreement
(0.8, 1) Almost perfect agreement
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Kappa Variations

I Weighted Kappa[3]: some misclassifications are a greater sin than others
I po =

∑k
i=1

∑k
j=1 wijpij

I pe =
∑k

i=1

∑k
j=1 wijpi.p.j

I Quadratic weights: wij = 1− (i−j)2

(K−1)2

I Absolute weights: wij = 1− |i−j|
(K−1)

I Kappa for multiple raters[4]

I Kappa for clustered data[8; 14; 16; 15]

I Using GEEs to incorporate rater and item covariate information into
Kappa[6]

I And many more!
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Kappa Asymptotics

I Fleiss et al.[5] asserted that, by CLT:

√
n(κ− κ0)

.∼ N
(

0, σ2
κ

)
,

where κ0 is the true κ value, and σ2
κ is a function of pe , po , and n

I This means we can create confidence intervals and perform inference on κ

I Since κ ∈ (−1, 1), Normal approximation from Fleiss et al. likely to
perform poorly in small samples

I Propose transformation of κ to map onto R:

f (κ) = ln

(
1 + κ

1− κ

)
≡ ϕ

I Can calculate CI for ϕ then back-transform to put it on regular κ scale for
interpretation
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SPOT GRADE Data

How are we using Kappa in the SPOT GRADE study?

+ + ... +

=

Performing Kappa on the additive rating table to assess how reliable surgeons
are at correctly classifying videos

10
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Issues & Goals

I Rating same video multiple times induces clustering that biases variance
estimate

I Videos within same category might not all have same probability of correct
classification
I Different combinations of surface area and flow rate
I Operating characteristics of Kappa’s asymptotic variance not yet explored

under this setting

I Goal: Want to adapt Kappa statistic for clustered data and
heterogeneity within categories by correcting variance estimate
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Simulated Data Generation

I 2 kinds of item heterogeneity we’re dealing with here that we need
simulated data to reflect:
I Some SBSS categories are inherently easier (0, 5) or more difficult (2, 3) to

correctly place than others (between-category heterogeneity)
I Some videos within an SBSS category may be easier/more difficult to

correctly place than others (within-category heterogeneity)

I How do we incorporate these into video classification probabilities?
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Simulated Data Generation

I Let πhmj be the probability video j classified as category m when actually
category h

I πhmj =
∫ m+0.5
m−0.5

( 1
5
u)
αhj−1

(1− 1
5
u)
βhj−1

Γ(αhj+βhj )

5Γ(αhj )Γ(βhj )
du

I αhj

αhj+βhj
× 5 = h

I log(βhj)
indep.∼ N(µh, σ

2
h)

I αhj =
βhjh
5−h

I µh controls probability of
correct classification

I σ2
h is increased or decreased to

create random video effects for
each unique video
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Variance Bias: Unclustered Data

Let’s see how Kappa behaves under video heterogeneity, but no clustering

I 10,000 simulations

I N=14 surgeons per simulation

I Three Kappa values: 0.4, 0.6, 0.8

I Four video heterogeneity settings:

Heterogeneity
Level

SBSS Category

0 1 2 3 4 5

None 0 0 0 0 0 0
Low 0.25 0.5 1 1 0.5 0.25
Medium 0.5 1 2 2 1 0.5
High 1 2 3 3 2 1

I 18 videos per SBSS category, each rated once per surgeon
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Variance Bias: Unclustered Data

I Variance ratio = Analytic variance
Empirical variance

Video Heterogeneity
None

Low Medium High

κ = 0.4 Variance Ratio 1.127

1.143 1.306 1.672

Coverage 0.963

0.963 0.974 0.989

κ = 0.6 Variance Ratio 1.125

1.202 1.392 1.736

Coverage 0.960

0.969 0.979 0.991

κ = 0.8 Variance Ratio 1.061

1.221 1.682 2.181

Coverage 0.952

0.970 0.988 0.997

I Analytic variance is inflated

I Increasing within-category video heterogeneity exacerbates this
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Variance Bias: Clustered Data

Does adding clustering change the previous results we saw?

I 10,000 simulations

I n=50 surgeons per simulation

I Three Kappa values: 0.4, 0.6, 0.8

I Four video heterogeneity settings:

Heterogeneity
Level

SBSS Category

0 1 2 3 4 5

None 0 0 0 0 0 0
Low 0.25 0.5 1 1 0.5 0.25
Medium 0.5 1 2 2 1 0.5
High 1 2 3 3 2 1

I Six videos per SBSS category, each rated three times per surgeon
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Variance Bias: Clustered Data

I Variance ratio = Analytic variance
Empirical variance

Video Heterogeneity
None

Low Medium High

Est. Kappa 0.404

0.474 0.419 0.477

κ = 0.4 Variance Ratio 1.130

1.186 1.354 1.555

Coverage 0.961

0.963 0.977 0.985

Est. Kappa 0.604

0.585 0.616 0.606

κ = 0.6 Variance Ratio 1.146

1.253 1.329 1.900

Coverage 0.961

0.971 0.978 0.993

Est. Kappa 0.795

0.747 0.795 0.825

κ = 0.8 Variance Ratio 1.067

1.228 1.494 2.036

Coverage 0.958

0.968 0.984 0.995

I Increases of video heterogeneity, combined with data clustering, inflates
analytic variance - not much different than we saw without clustering

I May bootstrap new variance estimate to correct this
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Variance Bias: Bootstrap

I Sampling units are surgeons, not videos
I Each bootstrap iteration will sample n surgeons

Algorithm 1: Bootstrap algorithm for variance of Kappa statistic.

for b in B do
Randomly choose n surgeons, with replacement;
Take all observations belonging to sampled surgeons, and place in one

contingency table;
Find statistic, κb;
Transform κb to ϕb;

end

Calculate ϕ̄ = 1
B

∑B
b=1 ϕb;

Calculate σ̂2
B =

∑B
b=1(ϕb−ϕ̄)2

B−1

I Use σ̂2
B instead of analytic variance estimate
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Variance Bias: Clustered Data

I Employing bootstrap (200 samples) attenuates variance ratio back toward
1:

Video Heterogeneity
None

Low Medium High

Est. Kappa 0.404

0.413 0.438 0.578

κ = 0.4 Variance Ratio 0.984

1.009 0.971 0.973

Coverage 0.940

0.942 0.940 0.940

Est. Kappa 0.604

0.599 0.652 0.679

κ = 0.6 Variance Ratio 0.993

0.983 1.004 0.979

Coverage 0.947

0.942 0.942 0.937

Est. Kappa 0.795

0.758 0.726 0.721

κ = 0.8 Variance Ratio 0.965

0.962 0.983 0.994

Coverage 0.938

0.937 0.939 0.941

I Bootstrap procedure corrects variance overestimation

I Slight undercoverage happening
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Application to SPOT GRADE: Presence of Heterogeneity

I Fixed variance bias in simulation

I Is heterogeneity actually a problem in real studies?
I Do we see between-category heterogeneity? Within-category heterogeneity?

I Compared surgeons’ ability to correctly classify individual videos within
the same category vs. all videos in a reference category(s) using Kappa
I If within-category kappas varied lots ⇒ lots of within-category

hetereogeneity
I If kappas between categories varied lots ⇒ lots of between-category

hetereogeneity
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Application to SPOT GRADE: Presence of Heterogeneity

21



Clustered &
Heterogeneous

Kappa

Mary M. Ryan

SPOT GRADE

Kappa Statistic

Clustered &
Heterogeneous
Kappa

Variance Bias

Application to
SPOT GRADE

Future Directions:
Group Sequential

References

Application to SPOT GRADE: Identification of Eligibility

I For development later clinical trial of local hemostatic device, important to
be able to identify study-eligible bleeds (SBSS 1-3) from study-ineligible
bleeds (SBSS 4-5)

I Testing hypothesis

H0 : κE ≤ 0.60 vs. H1 : κE > 0.60

Partial Z
Transformation

Bootstrapped
Variance Est.

κ (95% CI)

0.811 (0.810, 0.813)

0.811 (0.791, 0.830)

0.833 (0.806, 0.861)
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Application to SPOT GRADE: Identification of Hemostasis

I To accurately assess whether the local hemostatic device under
consideration was effective, necessary for surgeons to be able to identify
whether hemostasis had been achieved (SBSS 0) or not (SBSS > 0).

I Testing hypothesis

H0 : κH ≤ 0.60 vs. H1 : κH > 0.60

Partial Z
Transformation

Bootstrapped
Variance Est.

κ (95% CI)

0.954 (0.952, 0.955)

0.954 (0.947, 0.960)

0.952 (0.930, 0.973)
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Conclusions

I Even with slight amounts of variability among classification probabilities
within categories, Kappa’s analytic variance largely overestimates the true
variance
I Application of the bootstrap corrects for this overestimation, allowing for the

correct inference of the Kappa statistic

I Unrealistic that the true level of within-category heterogeneity will be
known for real world data
I Bias in the analytic variance of Kappa is largely driven by the presence of this

heterogeneity
I Application of our bootstrap variance estimate does not harm inference in

settings where no heterogeneity is present
I Adoption of our methodology will provide robust inference of the Kappa

statistic
I Further results can be seen in Ryan, Spotnitz, & Gillen (2020) “Variance

estimation for the Kappa statistic in the presence of clustered data and
heterogeneous observations”, Statistics in Medicine.
doi.org/10.1002/sim.8522[12]
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Future Directions: Group Sequential Design

I For study, surgeons were flown out to central testing/training site in two
groups of 7

I Observed kappas were much higher than the 0.6 null - did we need all 14?

I Can we make this study more efficient using sequential sampling/group
sequential design?

25
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Future Directions: Group Sequential Design

I Study framework used to assess early signs of study futility or efficacy

I Hypothesis tests performed at multiple points throughout data accrual
(interim analyses) to determine if sufficient evidence to draw a conclusion
early

26
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Future Directions: Group Sequential Design

I Performing maximum of J planned analyses

I Statistic of interest at analysis j θ̂(j), j ∈ {1, ..., J}
I Continuation set Cj = (aj , bj ] ∪ [cj , dj), −∞ ≤ aj ≤ bj ≤ cj ≤ dj ≤ ∞
I Stopping set Sj ≡ C c

j

I At final analysis J:
I aJ = bJ = cJ = dJ

I Think of aj , bj , cj , dj as critical values (stopping boundaries)
I For one-sided (θ > θ0) test:

I θ̂(j) ≤ aj : stop study in favor of null (futility)
I θ̂(j) ≥ dj : stop study in favor of alternative (efficacy)
I θ̂(j) ∈ (aj = bj = cj , dj): continue to analysis (j + 1)

I Need to adjust critical values we compare our statistic to at each analysis in
order to maintain type I error

I Need to know sequential pdf find appropriate values
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Future Directions: Group Sequential Design

I Assume θ is Normally distributed

I Independent increments property:

Cov [θ(j), θ(j ′)] = Var [θ(j)] = σ2,(j), j < j ′

I Armitage et al.[1] and Jennison & Turnbull[7] found that, given Normal
approximation of independent increments, probability density function,
θ(j), can be written as recursive Normal distributions:

fj (θ
(j))=



∫
Cj−1

fj−1(u) 1√
2πσ2,(j)

exp{− 1

2σ2,(j)
(θ(j)−u)2}du, θ(j) /∈Cj−1

0, otherwise

I fj−1(u): density at previous analysis (j-1)
I Cj−1: Continuation set for analysis (j-1)
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Future Directions: Group Sequential Design

I Infinite number of
combinations of
aj , bj , cj , dj that will given
us correct type I error (use
sequential pdf to check)
I Similar combinations

with certain properties
get grouped together
and called boundary
shapes

I Common boundary shapes:

I Pocock[11]

I O’Brien-Fleming[10]

I More conservative
earlier in the study
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Future Directions: Group Sequential Design

I Issue: Kappa doesn’t have independent increments property ⇒ difficult to
find the sequential pdf to determine correct stopping boundaries

Naive Boundaries Group Sequential Boundaries

I Using traditional GSD boundaries assuming independent increments
doesn’t quite control type I error, even if using bootstrapped variance
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Future Directions: Group Sequential Design

I One solution: can use regular GSD boundaries for first (J-1) analyses, then
simulate the last boundary necessary to maintain type I error

I Not much help if you aren’t making it to the final analysis
I If never making it to final analysis, must be underestimating variance

(smaller variance ⇒ larger Z test statistic)
I A way to rescale the variance?
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Future Directions: Group Sequential Design

I Something that seems to be working:

Algorithm 2: GSD bootstrap algorithm for variance of Kappa statistic.

for j in J do
if j==1 then

Perform Algorithm 1 to obtain σ̂
2,(1)
B for n1 surgeons;

else

Bootstrap κ
(1)
b as in Algorithm 1 for n1 surgeons;

for u in 2:j do
Bootstrap κub as in Algorithm 1 for nu − n(u−1) surgeons;

Create κ
(u)
b using bootstrapped

∑u
v=1 nv surgeons;

z
(u)
b =

κ
(u)
b −κ0

(u−1)σ̂
2,(u)
B /u

;

Compare z
(u)
b to stopping boundary for analysis u - if crosses,

filter out all z
(u+1)
b , ... and κ

(u+1)
b , ...;

end

Calculate ϕ̄(u) = 1
B

∑B
b=1 ϕ

(u)
b ;

Calculate σ̂
2,(j)
B =

∑B
b=1 ϕ

(u)
b −ϕ̄

(u)

B−1

end

Use (j−1)
j σ̂

2,(j)
B in Z-statistic to compare to stopping boundaries;

end
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